2,148 research outputs found

    IceCube Non-detection of GRBs: Constraints on the Fireball Properties

    Full text link
    The increasingly deep limit on the neutrino emission from gamma-ray bursts (GRBs) with IceCube observations has reached the level that could put useful constraints on the fireball properties. We first present a revised analytic calculation of the neutrino flux, which predicts a flux an order of magnitude lower than that obtained by the IceCube collaboration. For benchmark model parameters (e.g. the bulk Lorentz factor is \Gamma=10^{2.5}, the observed variability time for long GRBs is t_v=0.01 s and the ratio between the energy in accelerated protons and in radiation is \eta_p=10 for every burst) in the standard internal shock scenario, the predicted neutrino flux from 215 bursts during the period of the 40-string and 59-string configurations is found to be a factor of ~3 below the IceCube sensitivity. However, if we accept the recently found inherent relation between the bulk Lorentz factor and burst energy, the expected neutrino flux increases significantly and the spectral peak shifts to lower energy. In this case, the non-detection then implies that the baryon loading ratio should be \eta_p<10 if the variability time of long GRBs is fixed to t_v=0.01 s. Instead, if we relax the standard internal shock scenario but keep to assume \eta_p=10, the non-detection constrains the dissipation radius to be R>4x10^{12} cm assuming the same dissipation radius for every burst and benchmark parameters for fireballs. We also calculate the diffuse neutrino flux from GRBs for different luminosity functions existing in the literature. The expected flux exceeds the current IceCube limit for some luminosity functions, and thus the non-detection constrains \eta_p<10 in such cases when the variability time of long GRBs is fixed to t_v=0.01 s.Comment: Accepted by ApJ, 14 pages, 5 figures, typos corrected, scheduled for the June 10, 2012, v752 - 1 issu

    KD-EKF: A Consistent Cooperative Localization Estimator Based on Kalman Decomposition

    Full text link
    In this paper, we revisit the inconsistency problem of EKF-based cooperative localization (CL) from the perspective of system decomposition. By transforming the linearized system used by the standard EKF into its Kalman observable canonical form, the observable and unobservable components of the system are separated. Consequently, the factors causing the dimension reduction of the unobservable subspace are explicitly isolated in the state propagation and measurement Jacobians of the Kalman observable canonical form. Motivated by these insights, we propose a new CL algorithm called KD-EKF which aims to enhance consistency. The key idea behind the KD-EKF algorithm involves perform state estimation in the transformed coordinates so as to eliminate the influencing factors of observability in the Kalman observable canonical form. As a result, the KD-EKF algorithm ensures correct observability properties and consistency. We extensively verify the effectiveness of the KD-EKF algorithm through both Monte Carlo simulations and real-world experiments. The results demonstrate that the KD-EKF outperforms state-of-the-art algorithms in terms of accuracy and consistency

    Extremely Strong ^{13}CO J=3-2 Line in the "Water Fountain" IRAS 16342-3814: Evidence for the Hot-Bottom Burning

    Full text link
    We observed four "water fountain" sources in the CO J=3-2 line emission with the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope in 2010-2011. The water fountain sources are evolved stars that form high-velocity collimated jets traced by water maser emission. The CO line was detected only from IRAS 16342-3814. The present work confirmed that the ^{12}CO to ^{13}CO line intensity ratio is ~1.5 at the systemic velocity. We discuss the origins of the very low ^{12}CO to ^{13}CO intensity ratio, as possible evidence for the "hot-bottom burning" in an oxygen-rich star, and the CO intensity variation in IRAS 16342-3814.Comment: 10 pages, 3 figures, accepted for publication to the Publications of the Astronomical Society of Japan, Vol. 64, No.
    • …
    corecore